Author:
Liao Ke,Li Xin-Zheng,Alavi Ali,Grüneis Andreas
Abstract
AbstractIdentifying the atomic structure and properties of solid hydrogen under high pressures is a long-standing problem of high-pressure physics with far-reaching significance in planetary and materials science. Determining the pressure-temperature phase diagram of hydrogen is challenging for experiment and theory due to the extreme conditions and the required accuracy in the quantum mechanical treatment of the constituent electrons and nuclei, respectively. Here, we demonstrate explicitly that coupled cluster theory can serve as a computationally efficient theoretical tool to predict solid hydrogen phases with high accuracy. We present a first principles study of solid hydrogen phases at pressures ranging from 100 to 450 GPa. The computed static lattice enthalpies are compared to state-of-the-art diffusion Monte Carlo results and density functional theory calculations. Our coupled cluster theory results for the most stable phases including C2/c-24 and P2$${}_{1}$$1/c-24 are in good agreement with those obtained using diffusion Monte Carlo, with the exception of Cmca-4, which is predicted to be significantly less stable. We discuss the scope of the employed methods and how they can contribute as efficient and complementary theoretical tools to solve the long-standing puzzle of understanding solid hydrogen phases at high pressures.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献