Abstract
AbstractLead zirconate (PbZrO3) is considered the prototypical antiferroelectric material with an antipolar ground state. Yet, several experimental and theoretical works hint at a partially polar behaviour in this compound, indicating that the polarization may not be completely compensated. In this work, we propose a simple ferrielectric structure for lead zirconate. First-principles calculations reveal this state to be more stable than the commonly accepted antiferroelectric phase at low temperatures, possibly up to room temperature, suggesting that PbZrO3 may not be antiferroelectric at ambient conditions. We discuss the implications of our discovery, how it can be reconciled with experimental observations and how the ferrielectric phase could be obtained in practice.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献