Machine-learning informed prediction of high-entropy solid solution formation: Beyond the Hume-Rothery rules

Author:

Pei ZongruiORCID,Yin Junqi,Hawk Jeffrey A.,Alman David E.,Gao Michael C.ORCID

Abstract

AbstractThe empirical rules for the prediction of solid solution formation proposed so far in the literature usually have very compromised predictability. Some rules with seemingly good predictability were, however, tested using small data sets. Based on an unprecedented large dataset containing 1252 multicomponent alloys, machine-learning methods showed that the formation of solid solutions can be very accurately predicted (93%). The machine-learning results help identify the most important features, such as molar volume, bulk modulus, and melting temperature. As such a new thermodynamics-based rule was developed to predict solid–solution alloys. The new rule is nonetheless slightly less accurate (73%) but has roots in the physical nature of the problem. The new rule is employed to predict solid solutions existing in the three blocks, each of which consists of 9 elements. The predictions encompass face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal closest packed (HCP) structures in a high throughput manner. The validity of the prediction is further confirmed by CALculations of PHAse Diagram (CALPHAD) calculations with high consistency (94%). Since the new thermodynamics-based rule employs only elemental properties, applicability in screening for solid solution high-entropy alloys is straightforward and efficient.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3