Abstract
AbstractIn the epitaxial growth of two-dimensional (2D) materials on substrates, 2D polycrystals with various shapes have been broadly observed, but their formation mechanisms are still highly elusive. Here we present a complete study on the formation mechanisms of various 2D polycrystals. The structures of the 2D polycrystals are dependent on the symmetries of both the 2D material and the substrate. We build four complete libraries of 2D polycrystals for (i) threefold symmetric 2D materials on two- or six-fold symmetric substrates (i.e., family-III/II or -III/VI), (ii) threefold symmetric 2D materials on fourfold symmetric substrates (i.e. family-III/IV), (iii) fourfold symmetric 2D materials on three- or six-fold symmetric substrates (i.e., family-IV/III or -IV/VI), and (iv) sixfold symmetric 2D materials on fourfold symmetric substrates (i.e., family-VI/IV), respectively. The four libraries of 2D polycrystals are consistent with many existing experimental observations and can be used to guide the experimental synthesis of various 2D polycrystals.
Funder
Institute for Basic Science
CAS | Institute of Chemistry, Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献