On strong-scaling and open-source tools for analyzing atom probe tomography data

Author:

Kühbach MarkusORCID,Bajaj Priyanshu,Zhao Huan,Çelik Murat H.,Jägle Eric A.,Gault BaptisteORCID

Abstract

AbstractThe development of strong-scaling computational tools for high-throughput methods with an open-source code and transparent metadata standards has successfully transformed many computational materials science communities. While such tools are mature already in the condensed-matter physics community, the situation is still very different for many experimentalists. Atom probe tomography (APT) is one example. This microscopy and microanalysis technique has matured into a versatile nano-analytical characterization tool with applications that range from materials science to geology and possibly beyond. Here, data science tools are required for extracting chemo-structural spatial correlations from the reconstructed point cloud. For APT and other high-end analysis techniques, post-processing is mostly executed with proprietary software tools, which are opaque in their execution and have often limited performance. Software development by members of the scientific community has improved the situation but compared to the sophistication in the field of computational materials science several gaps remain. This is particularly the case for open-source tools that support scientific computing hardware, tools which enable high-throughput workflows, and open well-documented metadata standards to align experimental research better with the fair data stewardship principles. To this end, we introduce paraprobe, an open-source tool for scientific computing and high-throughput studying of point cloud data, here exemplified with APT. We show how to quantify uncertainties while applying several computational geometry, spatial statistics, and clustering tasks for post-processing APT datasets as large as two billion ions. These tools work well in concert with Python and HDF5 to enable several orders of magnitude performance gain, automation, and reproducibility.

Funder

Deutsche Forschungsgemeinschaft

Max-Planck-Gesellschaft

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3