Accelerated design and characterization of non-uniform cellular materials via a machine-learning based framework

Author:

Ma Chunping,Zhang Zhiwei,Luce Benjamin,Pusateri Simon,Xie Binglin,Rafiei Mohammad H.,Hu NanORCID

Abstract

AbstractCellular materials, widely found in engineered and nature systems, are highly dependent on their geometric arrangement. A non-uniform arrangement could lead to a significant variation of mechanical properties while bringing challenges in material design. Here, this proof-of-concept study demonstrates a machine-learning based framework with the capability of accelerated characterization and pattern generation. Results showed that the proposed framework is capable of predicting the mechanical response curve of any given geometric pattern within the design domain under appropriate neural network architecture and parameters. Additionally, the framework is capable of generating matching geometric patterns for a targeted response through a databank constructed from our machine learning model. The accuracy of the predictions was verified with finite element simulations and the sources of errors were identified. Overall, our machine-learning based framework can boost the design efficiency of cellular materials at unit level, and open new avenues for the programmability of function at system level.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3