End-to-end differentiability and tensor processing unit computing to accelerate materials’ inverse design

Author:

Liu HanORCID,Liu Yuhan,Li Kevin,Zhao Zhangji,Schoenholz Samuel S.,Cubuk Ekin D.,Gupta Puneet,Bauchy MathieuORCID

Abstract

AbstractNumerical simulations have revolutionized material design. However, although simulations excel at mapping an input material to its output property, their direct application to inverse design has traditionally been limited by their high computing cost and lack of differentiability. Here, taking the example of the inverse design of a porous matrix featuring targeted sorption isotherm, we introduce a computational inverse design framework that addresses these challenges, by programming differentiable simulation on TensorFlow platform that leverages automated end-to-end differentiation. Thanks to its differentiability, the simulation is used to directly train a deep generative model, which outputs an optimal porous matrix based on an arbitrary input sorption isotherm curve. Importantly, this inverse design pipeline leverages the power of tensor processing units (TPU)—an emerging family of dedicated chips, which, although they are specialized in deep learning, are flexible enough for intensive scientific simulations. This approach holds promise to accelerate inverse materials design.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3