Abstract
AbstractThe interplay of magnetism and topology opens up the possibility for exotic linear response effects, such as the anomalous Hall effect and the anomalous Nernst effect, which can be strongly enhanced by designing a large Berry curvature in the electronic structure. Magnetic Heusler compounds are a promising class of materials for this purpose because they are versatile, show magnetism, and their electronic structure hosts strong topological features. Here, we provide a comprehensive study of the intrinsic anomalous transport for magnetic cubic full Heusler compounds and we illustrate that several Heusler compounds outperform the best so far reported materials. The results reveal the importance of symmetries, especially mirror planes, in combination with magnetism for giant anomalous Hall and Nernst effects, which should be valid in general for linear responses (spin Hall effect, spin orbital torque, etc.) dominated by intrinsic contributions.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献