Mapping microstructure to shock-induced temperature fields using deep learning

Author:

Li ChunyuORCID,Verduzco Juan Carlos,Lee Brian H.,Appleton Robert J.ORCID,Strachan AlejandroORCID

Abstract

AbstractThe response of materials to shock loading is important to planetary science, aerospace engineering, and energetic materials. Thermally activated processes, including chemical reactions and phase transitions, are significantly accelerated by energy localization into hotspots. These result from the interaction of the shockwave with the materials’ microstructure and are governed by complex, coupled processes, including the collapse of porosity, interfacial friction, and localized plastic deformation. These mechanisms are not fully understood and the lack of models limits our ability to predict shock to detonation transition from chemistry and microstructure alone. We demonstrate that deep learning can be used to predict the resulting shock-induced temperature fields in composite materials obtained from large-scale molecular dynamics simulations with the initial microstructure as the only input. The accuracy of the Microstructure-Informed Shock-induced Temperature net (MISTnet) model is higher than the current state of the art and its evaluation requires a fraction of the computation cost.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3