Weighted kernels improve multi-environment genomic prediction

Author:

Hu Xiaowei,Carver Brett F.,El-Kassaby Yousry A.ORCID,Zhu Lan,Chen CharlesORCID

Abstract

AbstractCrucial to variety improvement programs is the reliable and accurate prediction of genotype’s performance across environments. However, due to the impactful presence of genotype by environment (G×E) interaction that dictates how changes in expression and function of genes influence target traits in different environments, prediction performance of genomic selection (GS) using single-environment models often falls short. Furthermore, despite the successes of genome-wide association studies (GWAS), the genetic insights derived from genome-to-phenome mapping have not yet been incorporated in predictive analytics, making GS models that use Gaussian kernel primarily an estimator of genomic similarity, instead of the underlying genetics characteristics of the populations. Here, we developed a GS framework that, in addition to capturing the overall genomic relationship, can capitalize on the signal of genetic associations of the phenotypic variation as well as the genetic characteristics of the populations. The capacity of predicting the performance of populations across environments was demonstrated by an overall gain in predictability up to 31% for the winter wheat DH population. Compared to Gaussian kernels, we showed that our multi-environment weighted kernels could better leverage the significance of genetic associations and yielded a marked improvement of 4–33% in prediction accuracy for half-sib families. Furthermore, the flexibility incorporated in our Bayesian implementation provides the generalizable capacity required for predicting multiple highly genetic heterogeneous populations across environments, allowing reliable GS for genetic improvement programs that have no access to genetically uniform material.

Funder

Oklahoma Center for the Advancement of Science and Technology

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3