Tests for associations between sexual dimorphism and patterns of quantitative genetic variation in the water strider, Aquarius remigis

Author:

Fairbairn Daphne J.,Roff Derek A.,Wolak Matthew E.ORCID

Abstract

AbstractThe evolution of sexual dimorphisms requires divergence between sexes in the evolutionary trajectories of the traits involved. Discerning how genetic architecture could facilitate such divergence has proven challenging because of the difficulty in estimating non-additive and sex-linked genetic variances using traditional quantitative genetic designs. Here we use a three-generation, double-first-cousin pedigree design to estimate additive, sex-linked and dominance (co)variances for 12 traits in the water strider, Aquarius remigis. Comparisons among these traits, which have size ratios ranging from 1 to 5 (larger/smaller), allow us to ask if sexual dimorphisms are associated with characteristic patterns of quantitative genetic variation. We frame our analysis around three main questions, derived from existing theory and empirical evidence: Are sexual dimorphisms associated with (1) lower additive inter-sex genetic correlations, (2) higher proportions of sex-linked variance, or (3) differences between sexes in autosomal additive and dominance genetic variances? For questions (1) and (2), we find weak and non-significant trends in the expected directions, which preclude definitive conclusions. However, in answer to question (3), we find strong evidence for a positive relationship between sexual dimorphism and differences between sexes in proportions of autosomal dominance variance. We also find strong interactions among the three genetic components indicating that their relative influence differs among traits and between sexes. These results highlight the need to include all three components of genetic (co)variance in both theoretical evolutionary models and empirical estimations of the genetic architecture of dimorphic traits.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3