Neural activity during inhibitory control predicts suicidal ideation with machine learning

Author:

Nan JasonORCID,Grennan Gillian,Ravichandran Soumya,Ramanathan Dhakshin,Mishra JyotiORCID

Abstract

AbstractSuicide is a leading cause of death in the US and worldwide. Current strategies for preventing suicide are often focused on the identification and treatment of risk factors, especially suicidal ideation (SI). Hence, developing data-driven biomarkers of SI may be key for suicide prevention and intervention. Prior attempts at biomarker-based prediction models for SI have primarily used expensive neuroimaging technologies, yet clinically scalable and affordable biomarkers remain elusive. Here, we investigated the classification of SI using machine learning (ML) on a dataset of 76 subjects with and without SI(+/−) (n = 38 each), who completed a neuro-cognitive assessment session synchronized with electroencephalography (EEG). SI+/− groups were matched for age, sex, and mental health symptoms of depression and anxiety. EEG was recorded at rest and while subjects engaged in four cognitive tasks of inhibitory control, interference processing, working memory, and emotion bias. We parsed EEG signals in physiologically relevant theta (4-8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) frequencies and performed cortical source imaging on the neural signals. These data served as SI predictors in ML models. The best ML model was obtained for beta band power during the inhibitory control (IC) task, demonstrating high sensitivity (89%), specificity (98%). Shapley explainer plots further showed top neural predictors as feedback-related power in the visual and posterior default mode networks and response-related power in the ventral attention, fronto-parietal, and sensory-motor networks. We further tested the external validity of the model in an independent clinically depressed sample (n = 35, 12 SI+) that engaged in an adaptive test version of the IC task, demonstrating 50% sensitivity and 61% specificity in this sample. Overall, the study suggests a promising, scalable EEG-based biomarker approach to predict SI that may serve as a target for risk identification and intervention.

Funder

UC | University of California, San Diego

Burroughs Wellcome Fund

Hope for Depression Research Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3