Antibodies from multiple sclerosis patients preferentially recognize hyperglucosylated adhesin of non-typeable Haemophilus influenzae

Author:

Walvoort Marthe T. C.,Testa Chiara,Eilam Raya,Aharoni Rina,Nuti Francesca,Rossi Giada,Real-Fernandez Feliciana,Lanzillo Roberta,Brescia Morra Vincenzo,Lolli Francesco,Rovero Paolo,Imperiali Barbara,Papini Anna Maria

Abstract

Abstract In autoimmune diseases, there have been proposals that exogenous “molecular triggers”, i.e., specific this should be ‘non-self antigens’ accompanying infectious agents, might disrupt control of the adaptive immune system resulting in serious pathologies. The etiology of the multiple sclerosis (MS) remains unclear. However, epidemiologic data suggest that exposure to infectious agents may be associated with increased MS risk and progression may be linked to exogenous, bacterially-derived, antigenic molecules, mimicking mammalian cell surface glycoconjugates triggering autoimmune responses. Previously, antibodies specific to a gluco-asparagine (N-Glc) glycopeptide, CSF114(N-Glc), were identified in sera of an MS patient subpopulation. Since the human glycoproteome repertoire lacks this uniquely modified amino acid, we turned our attention to bacteria, i.e., Haemophilus influenzae, expressing cell-surface adhesins including N-Glc, to establish a connection between H. influenzae infection and MS. We exploited the biosynthetic machinery from the opportunistic pathogen H. influenzae (and the homologous enzymes from A. pleuropneumoniae) to produce a unique set of defined glucosylated adhesin proteins. Interestingly we revealed that a hyperglucosylated protein domain, based on the cell-surface adhesin HMW1A, is preferentially recognized by antibodies from sera of an MS patient subpopulation. In conclusion the hyperglucosylated adhesin is the first example of an N-glucosylated native antigen that can be considered a relevant candidate for triggering pathogenic antibodies in MS.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3