A foundation model for clinical-grade computational pathology and rare cancers detection

Author:

Vorontsov EugeneORCID,Bozkurt Alican,Casson Adam,Shaikovski George,Zelechowski Michal,Severson KristenORCID,Zimmermann Eric,Hall James,Tenenholtz NeilORCID,Fusi NicoloORCID,Yang Ellen,Mathieu Philippe,van Eck Alexander,Lee Donghun,Viret Julian,Robert EricORCID,Wang Yi Kan,Kunz Jeremy D.,Lee Matthew C. H.,Bernhard Jan H.,Godrich Ran A.,Oakley Gerard,Millar Ewan,Hanna Matthew,Wen Hannah,Retamero Juan A.,Moye William A.,Yousfi Razik,Kanan ChristopherORCID,Klimstra David S.,Rothrock BrandonORCID,Liu SiqiORCID,Fuchs Thomas J.

Abstract

AbstractThe analysis of histopathology images with artificial intelligence aims to enable clinical decision support systems and precision medicine. The success of such applications depends on the ability to model the diverse patterns observed in pathology images. To this end, we present Virchow, the largest foundation model for computational pathology to date. In addition to the evaluation of biomarker prediction and cell identification, we demonstrate that a large foundation model enables pan-cancer detection, achieving 0.95 specimen-level area under the (receiver operating characteristic) curve across nine common and seven rare cancers. Furthermore, we show that with less training data, the pan-cancer detector built on Virchow can achieve similar performance to tissue-specific clinical-grade models in production and outperform them on some rare variants of cancer. Virchow’s performance gains highlight the value of a foundation model and open possibilities for many high-impact applications with limited amounts of labeled training data.

Funder

U.S. Department of Health & Human Services | NIH | National Cancer Institute

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The age of foundation models;Nature Reviews Clinical Oncology;2024-09-05

2. Scaling data toward pan-cancer foundation models;Trends in Cancer;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3