Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
-
Published:2022-01
Issue:1
Volume:28
Page:154-163
-
ISSN:1078-8956
-
Container-title:Nature Medicine
-
language:en
-
Short-container-title:Nat Med
Author:
Bulten WouterORCID, Kartasalo KimmoORCID, Chen Po-Hsuan CameronORCID, Ström Peter, Pinckaers Hans, Nagpal Kunal, Cai Yuannan, Steiner David F.ORCID, van Boven Hester, Vink Robert, Hulsbergen-van de Kaa Christina, van der Laak JeroenORCID, Amin Mahul B.ORCID, Evans Andrew J., van der Kwast TheodorusORCID, Allan Robert, Humphrey Peter A., Grönberg HenrikORCID, Samaratunga Hemamali, Delahunt Brett, Tsuzuki ToyonoriORCID, Häkkinen Tomi, Egevad Lars, Demkin Maggie, Dane Sohier, Tan Fraser, Valkonen Masi, Corrado Greg S., Peng Lily, Mermel Craig H.ORCID, Ruusuvuori Pekka, Litjens GeertORCID, Eklund MartinORCID, Brilhante Américo, Çakır Aslı, Farré Xavier, Geronatsiou Katerina, Molinié Vincent, Pereira Guilherme, Roy Paromita, Saile Günter, Salles Paulo G. O., Schaafsma Ewout, Tschui Joëlle, Billoch-Lima Jorge, Pereira Emíio M., Zhou Ming, He Shujun, Song Sejun, Sun Qing, Yoshihara Hiroshi, Yamaguchi Taiki, Ono Kosaku, Shen Tao, Ji Jianyi, Roussel Arnaud, Zhou Kairong, Chai Tianrui, Weng Nina, Grechka Dmitry, Shugaev Maxim V., Kiminya Raphael, Kovalev Vassili, Voynov Dmitry, Malyshev Valery, Lapo Elizabeth, Campos Manuel, Ota Noriaki, Yamaoka Shinsuke, Fujimoto Yusuke, Yoshioka Kentaro, Juvonen Joni, Tukiainen Mikko, Karlsson Antti, Guo Rui, Hsieh Chia-Lun, Zubarev Igor, Bukhar Habib S. T., Li Wenyuan, Li Jiayun, Speier William, Arnold Corey, Kim Kyungdoc, Bae Byeonguk, Kim Yeong Won, Lee Hong-Seok, Park Jeonghyuk,
Abstract
AbstractArtificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hindered by lack of reproducibility and independent validation. With this in mind, we organized the PANDA challenge—the largest histopathology competition to date, joined by 1,290 developers—to catalyze development of reproducible AI algorithms for Gleason grading using 10,616 digitized prostate biopsies. We validated that a diverse set of submitted algorithms reached pathologist-level performance on independent cross-continental cohorts, fully blinded to the algorithm developers. On United States and European external validation sets, the algorithms achieved agreements of 0.862 (quadratically weighted κ, 95% confidence interval (CI), 0.840–0.884) and 0.868 (95% CI, 0.835–0.900) with expert uropathologists. Successful generalization across different patient populations, laboratories and reference standards, achieved by a variety of algorithmic approaches, warrants evaluating AI-based Gleason grading in prospective clinical trials.
Funder
KWF Kankerbestrijding Google LLC, Verily Life Sciences Syöpäsäätiö Academy of Finland ERAPermed Nederlandse Organisatie voor Wetenschappelijk Onderzoek Vetenskapsrådet Cancerfonden Åke Wiberg Stiftelse EIT Health, Prostatacancerförbundet
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference39 articles.
1. Epstein, J. I. An update of the gleason grading system. J. Urol. 183, 433–440 (2010). 2. Mohler, J. L. et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 17, 479–505 (2019). 3. van Leenders, G. J. L. H. et al. The 2019 international society of urological pathology (ISUP) consensus conference on grading of prostatic carcinoma. Am. J. Surg. Pathol. 44, e87 (2020). 4. Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: Definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 40, 244–252 (2016). 5. Pierorazio, P. M., Walsh, P. C., Partin, A. W. & Epstein, J. I. Prognostic Gleason grade grouping: data based on the modified Gleason scoring system. BJU Int. 111, 753–760 (2013).
Cited by
236 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|