Propagative α-synuclein seeds as serum biomarkers for synucleinopathies

Author:

Okuzumi AyamiORCID,Hatano TakuORCID,Matsumoto Gen,Nojiri Shuko,Ueno Shin-ichiORCID,Imamichi-Tatano YokoORCID,Kimura HarukaORCID,Kakuta SoichiroORCID,Kondo AkihideORCID,Fukuhara Takeshi,Li Yuanzhe,Funayama ManabuORCID,Saiki ShinjiORCID,Taniguchi Daisuke,Tsunemi Taiji,McIntyre Deborah,Gérardy Jean-Jacques,Mittelbronn Michel,Kruger Rejko,Uchiyama Yasuo,Nukina Nobuyuki,Hattori NobutakaORCID

Abstract

AbstractAbnormal α-synuclein aggregation is a key pathological feature of a group of neurodegenerative diseases known as synucleinopathies, which include Parkinson’s disease (PD), dementia with Lewy bodies and multiple system atrophy (MSA). The pathogenic β-sheet seed conformation of α-synuclein is found in various tissues, suggesting potential as a biomarker, but few studies have been able to reliably detect these seeds in serum samples. In this study, we developed a modified assay system, called immunoprecipitation-based real-time quaking-induced conversion (IP/RT-QuIC), which enables the detection of pathogenic α-synuclein seeds in the serum of individuals with synucleinopathies. In our internal first and second cohorts, IP/RT-QuIC showed high diagnostic performance for differentiating PD versus controls (area under the curve (AUC): 0.96 (95% confidence interval (CI) 0.95–0.99)/AUC: 0.93 (95% CI 0.84–1.00)) and MSA versus controls (AUC: 0.64 (95% CI 0.49–0.79)/AUC: 0.73 (95% CI 0.49–0.98)). IP/RT-QuIC also showed high diagnostic performance in differentiating individuals with PD (AUC: 0.86 (95% CI 0.74–0.99)) and MSA (AUC: 0.80 (95% CI 0.65–0.97)) from controls in a blinded external cohort. Notably, amplified seeds maintained disease-specific properties, allowing the differentiation of samples from individuals with PD versus MSA. In summary, here we present a novel platform that may allow the detection of individuals with synucleinopathies using serum samples.

Funder

Japan Agency for Medical Research and Development

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3