Large language models for preventing medication direction errors in online pharmacies

Author:

Pais CristobalORCID,Liu Jianfeng,Voigt Robert,Gupta Vin,Wade Elizabeth,Bayati Mohsen

Abstract

AbstractErrors in pharmacy medication directions, such as incorrect instructions for dosage or frequency, can increase patient safety risk substantially by raising the chances of adverse drug events. This study explores how integrating domain knowledge with large language models (LLMs)—capable of sophisticated text interpretation and generation—can reduce these errors. We introduce MEDIC (medication direction copilot), a system that emulates the reasoning of pharmacists by prioritizing precise communication of core clinical components of a prescription, such as dosage and frequency. It fine-tunes a first-generation LLM using 1,000 expert-annotated and augmented directions from Amazon Pharmacy to extract the core components and assembles them into complete directions using pharmacy logic and safety guardrails. We compared MEDIC against two LLM-based benchmarks: one leveraging 1.5 million medication directions and the other using state-of-the-art LLMs. On 1,200 expert-reviewed prescriptions, the two benchmarks respectively recorded 1.51 (confidence interval (CI) 1.03, 2.31) and 4.38 (CI 3.13, 6.64) times more near-miss events—errors caught and corrected before reaching the patient—than MEDIC. Additionally, we tested MEDIC by deploying within the production system of an online pharmacy, and during this experimental period, it reduced near-miss events by 33% (CI 26%, 40%). This study shows that LLMs, with domain expertise and safeguards, improve the accuracy and efficiency of pharmacy operations.

Publisher

Springer Science and Business Media LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3