Integrated image-based deep learning and language models for primary diabetes care

Author:

Li Jiajia,Guan ZhouyuORCID,Wang Jing,Cheung Carol Y.,Zheng Yingfeng,Lim Lee-LingORCID,Lim Cynthia Ciwei,Ruamviboonsuk Paisan,Raman Rajiv,Corsino Leonor,Echouffo-Tcheugui Justin B.,Luk Andrea O. Y.,Chen Li JiaORCID,Sun XiaodongORCID,Hamzah Haslina,Wu Qiang,Wang XiangningORCID,Liu RuhanORCID,Wang Ya XingORCID,Chen Tingli,Zhang Xiao,Yang Xiaolong,Yin Jun,Wan Jing,Du Wei,Quek Ten Cheer,Goh Jocelyn Hui Lin,Yang Dawei,Hu Xiaoyan,Nguyen Truong X.ORCID,Szeto Simon K. H.ORCID,Chotcomwongse Peranut,Malek Rachid,Normatova Nargiza,Ibragimova Nilufar,Srinivasan Ramyaa,Zhong Pingting,Huang WenyongORCID,Deng Chenxin,Ruan Lei,Zhang Cuntai,Zhang Chenxi,Zhou Yan,Wu Chan,Dai Rongping,Koh Sky Wei CheeORCID,Abdullah Adina,Hee Nicholas Ken Yoong,Tan Hong Chang,Liew Zhong Hong,Tien Carolyn Shan-YeuORCID,Kao Shih Ling,Lim Amanda Yuan LingORCID,Mok Shao Feng,Sun Lina,Gu Jing,Wu Liang,Li Tingyao,Cheng Di,Wang Zheyuan,Qin YimingORCID,Dai LingORCID,Meng Ziyao,Shu Jia,Lu Yuwei,Jiang Nan,Hu Tingting,Huang Shan,Huang Gengyou,Yu Shujie,Liu Dan,Ma WeizhiORCID,Guo Minyi,Guan Xinping,Yang XiaokangORCID,Bascaran Covadonga,Cleland Charles R.,Bao Yuqian,Ekinci Elif I.,Jenkins AliciaORCID,Chan Juliana C. N.ORCID,Bee Yong MongORCID,Sivaprasad Sobha,Shaw Jonathan E.,Simó RafaelORCID,Keane Pearse A.ORCID,Cheng Ching-YuORCID,Tan Gavin Siew Wei,Jia WeipingORCID,Tham Yih-ChungORCID,Li HuatingORCID,Sheng BinORCID,Wong Tien YinORCID

Abstract

AbstractPrimary diabetes care and diabetic retinopathy (DR) screening persist as major public health challenges due to a shortage of trained primary care physicians (PCPs), particularly in low-resource settings. Here, to bridge the gaps, we developed an integrated image–language system (DeepDR-LLM), combining a large language model (LLM module) and image-based deep learning (DeepDR-Transformer), to provide individualized diabetes management recommendations to PCPs. In a retrospective evaluation, the LLM module demonstrated comparable performance to PCPs and endocrinology residents when tested in English and outperformed PCPs and had comparable performance to endocrinology residents in Chinese. For identifying referable DR, the average PCP’s accuracy was 81.0% unassisted and 92.3% assisted by DeepDR-Transformer. Furthermore, we performed a single-center real-world prospective study, deploying DeepDR-LLM. We compared diabetes management adherence of patients under the unassisted PCP arm (n = 397) with those under the PCP+DeepDR-LLM arm (n = 372). Patients with newly diagnosed diabetes in the PCP+DeepDR-LLM arm showed better self-management behaviors throughout follow-up (P < 0.05). For patients with referral DR, those in the PCP+DeepDR-LLM arm were more likely to adhere to DR referrals (P < 0.01). Additionally, DeepDR-LLM deployment improved the quality and empathy level of management recommendations. Given its multifaceted performance, DeepDR-LLM holds promise as a digital solution for enhancing primary diabetes care and DR screening.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3