The limits of fair medical imaging AI in real-world generalization

Author:

Yang YuzheORCID,Zhang Haoran,Gichoya Judy W.ORCID,Katabi Dina,Ghassemi MarzyehORCID

Abstract

AbstractAs artificial intelligence (AI) rapidly approaches human-level performance in medical imaging, it is crucial that it does not exacerbate or propagate healthcare disparities. Previous research established AI’s capacity to infer demographic data from chest X-rays, leading to a key concern: do models using demographic shortcuts have unfair predictions across subpopulations? In this study, we conducted a thorough investigation into the extent to which medical AI uses demographic encodings, focusing on potential fairness discrepancies within both in-distribution training sets and external test sets. Our analysis covers three key medical imaging disciplines—radiology, dermatology and ophthalmology—and incorporates data from six global chest X-ray datasets. We confirm that medical imaging AI leverages demographic shortcuts in disease classification. Although correcting shortcuts algorithmically effectively addresses fairness gaps to create ‘locally optimal’ models within the original data distribution, this optimality is not true in new test settings. Surprisingly, we found that models with less encoding of demographic attributes are often most ‘globally optimal’, exhibiting better fairness during model evaluation in new test environments. Our work establishes best practices for medical imaging models that maintain their performance and fairness in deployments beyond their initial training contexts, underscoring critical considerations for AI clinical deployments across populations and sites.

Funder

Google

Radiological Society of North America

U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering

U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute

Gordon and Betty Moore Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3