Author:
Karalis Konstantinos T.,Dellis Dimitrios,Antipas Georgios S. E.,Xenidis Anthimos
Abstract
Abstract
The thermodynamics, structural and transport properties (density, melting point, heat capacity, thermal expansion coefficient, viscosity and electrical conductivity) of a ferro-aluminosilicate slag have been studied in the solid and liquid state (1273–2273 K) using molecular dynamics. The simulations were based on a Buckingham-type potential, which was extended here, to account for the presence of Cr and Cu. The potential was optimized by fitting pair distribution function partials to values determined by Reverse Monte Carlo modelling of X-ray and neutron diffraction experiments. The resulting short range order features and ring statistics were in tight agreement with experimental data and created consensus for the accurate prediction of transport properties. Accordingly, calculations yielded rational values both for the average heat capacity, equal to 1668.58 J/(kg·K), and for the viscosity, in the range of 4.09–87.64 cP. The potential was consistent in predicting accurate values for mass density (i.e. 2961.50 kg/m3 vs. an experimental value of 2940 kg/m3) and for electrical conductivity (5.3–233 S/m within a temperature range of 1273.15–2273.15 K).
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献