Premature primary tooth eruption in cognitive/motor-delayed ADNP-mutated children

Author:

Gozes I,Van Dijck A,Hacohen-Kleiman G,Grigg I,Karmon G,Giladi E,Eger M,Gabet Y,Pasmanik-Chor M,Cappuyns E,Elpeleg O,Kooy R F,Bedrosian-Sermone S

Abstract

Abstract A major flaw in autism spectrum disorder (ASD) management is late diagnosis. Activity-dependent neuroprotective protein (ADNP) is a most frequent de novo mutated ASD-related gene. Functionally, ADNP protects nerve cells against electrical blockade. In mice, complete Adnp deficiency results in dysregulation of over 400 genes and failure to form a brain. Adnp haploinsufficiency results in cognitive and social deficiencies coupled to sex- and age-dependent deficits in the key microtubule and ion channel pathways. Here, collaborating with parents/caregivers globally, we discovered premature tooth eruption as a potential early diagnostic biomarker for ADNP mutation. The parents of 44/54 ADNP-mutated children reported an almost full erupted dentition by 1 year of age, including molars and only 10 of the children had teeth within the normal developmental time range. Looking at Adnp-deficient mice, by computed tomography, showed significantly smaller dental sacs and tooth buds at 5 days of age in the deficient mice compared to littermate controls. There was only trending at 2 days, implicating age-dependent dysregulation of teething in Adnp-deficient mice. Allen Atlas analysis showed Adnp expression in the jaw area. RNA sequencing (RNAseq) and gene array analysis of human ADNP-mutated lymphoblastoids, whole-mouse embryos and mouse brains identified dysregulation of bone/nervous system-controlling genes resulting from ADNP mutation/deficiency (for example, BMP1 and BMP4). AKAP6, discovered here as a major gene regulated by ADNP, also links cognition and bone maintenance. To the best of our knowledge, this is the first time that early primary (deciduous) teething is related to the ADNP syndrome, providing for early/simple diagnosis and paving the path to early intervention/specialized treatment plan.

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3