Abstract
AbstractAmple evidence has demonstrated that biological cells not only react to biochemical cues from the surrounding microenvironments but also sensitively detect the mechanical properties of the extracellular matrix and neighboring cells to adapt their shape, function, and fate. Mechanical aspects in biology, called mechanobiology, have been attracting biologists, chemists, physicists, and mechanical engineers. However, most in vitro studies to date have heavily relied on covalently cross-linked hydrogels with prefixed and hence unchangeable mechanical properties, although the mechanical properties of the cellular microenvironment are never uniform or static. From this context, stimuli-responsive hydrogels are highly attractive as surrogate materials that can simulate dynamic physical microenvironments in vivo. This review tries to provide a comprehensive overview of previous achievements, present pitfalls and challenges, and future perspectives on the recent development of stimuli-responsive hydrogel materials for the dynamic control of cell behavior.
Funder
MEXT | Japan Society for the Promotion of Science
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Polymers and Plastics
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献