Preparation and properties of silicone rubber materials with foam/solid alternating multilayered structures

Author:

Zhang Wenhuan,Deng Zhaoping,Yuan Hongwei,Luo Shikai,Wen Huayin,Liu Tao

Abstract

AbstractIn this paper, silicone rubber materials with foam/solid alternating multilayered structures were successfully constructed by combining the two methods of multilayered hot-pressing and supercritical carbon dioxide (SCCO2) foaming. The cellular morphology and mechanical properties of the foam/solid alternating multilayered silicone rubber materials were systematically studied. The results show that the growth of the cell was restrained by the solid layer, resulting in a decrease in the cell size. In addition, the introduction of the solid layer effectively improved the mechanical properties of the microcellular silicone rubber foam. The tensile strength and compressive strength of the foam/solid alternating multilayered silicone rubber materials reached 5.39 and 1.08 MPa, which are 46.1% and 237.5% of the pure silicone rubber foam, respectively. Finite element analysis (FEA) was applied and the results indicate that the strength and proportion of the solid layer played important roles in the tensile strength of the foam/solid alternating multilayered silicone rubber materials. Moreover, the small cellular structures in silicone rubber foam can provided a high supporting counterforce during compression, meaning that the microcellular structure of silicone rubber foam improved the compressive property compared to that for the large cellular structure of silicone rubber foam.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3