Ultrafast cold-brewing of coffee by picosecond-pulsed laser extraction

Author:

Ziefuß Anna R.,Hupfeld Tim,Meckelmann Sven W.,Meyer MartinORCID,Schmitz Oliver J.,Kaziur-Cegla Wiebke,Tintrop Lucie K.ORCID,Schmidt Torsten C.ORCID,Gökce BilalORCID,Barcikowski StephanORCID

Abstract

AbstractCoffee is typically brewed by extracting roasted and milled beans with hot water, but alternative methods such as cold brewing became increasingly popular over the past years. Cold-brewed coffee is attributed to health benefits, fewer acids, and bitter substances. But the preparation of cold brew typically needs several hours or even days. To create a cold-brew coffee within a few minutes, we present an approach in which an ultrashort-pulsed laser system is applied at the brewing entity without heating the powder suspension in water, efficiently extracting caffeine and aromatic substances from the powder. Already 3 min irradiation at room temperature leads to a caffeine concentration of 25 mg caffeine per 100 ml, comparable to the concentrations achieved by traditional hot brewing methods but comes without heating the suspension. Furthermore, the liquid phase’s alkaloid content, analyzed by reversed-phase liquid chromatography coupled to high-resolution mass spectrometry, is dominated by caffeine and trigonelline and is comparable to traditional cold-brewed coffee rather than hot-brewed coffee. Furthermore, analyzing the head-space of the prepared coffee variants, using in-tube extraction dynamic head-space followed by gas chromatography coupled to mass spectrometry, gives evidence that the lack of heating leads to the preservation of more (semi-)volatile substances like pyridine, which provide cold-brew coffee its unique taste. This pioneering study may give the impetus to investigate further the possibility of cold-brewing coffee, accelerated by more than one order of magnitude, using ultrafast laser systems.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3