Water usability as a descriptive parameter of thermodynamic properties and water mobility in food solids

Author:

Cui Tingting,Wu Xukai,Mou Tian,Fan FanghuiORCID

Abstract

AbstractA classic problem in preservation is the microbes can grow in low-moisture foods. In this paper, the water sorption, and thermodynamic properties of glucose/WPI solid matrices were measured, while their molecular mobility was analyzed and associated with the microbial growth of D. Hansenii at various aw and 30 °C. Although the sorption isotherms, Tg, and relaxation processes of studied matrices were affected by aw and WPI, the microbial growth showed highly dependent on water mobility rather than aw. Hence, we introduced water usability (Uw), derived from the mobility difference between system-involved water and liquid pure water explicating from the classical thermodynamic viewpoint, to describe the dynamic changes of water mobility in glucose/WPI matrices. Despite to aw, the yeast growth rate was enhanced at high Uw matrices concomitantly with a rapid cell doubling time. Therefore, the proposed Uw provides a better understanding of the water relationships of microorganisms in food preservation.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3