Upregulation of the serine palmitoyltransferase subunit SPTLC2 by endoplasmic reticulum stress inhibits the hepatic insulin response

Author:

Kim Goon-TaeORCID,Devi Shivani,Sharma Amitesh,Cho Kyung-Hee,Kim Su-Jung,Kim Bo-Rahm,Kwon Sang-Ho,Park Tae-Sik

Abstract

AbstractEndoplasmic reticulum (ER) stress is induced by various conditions, such as inflammation and the presence of excess nutrients. Abnormal accumulation of unfolded proteins leads to the activation of a collective signaling cascade, termed the unfolded protein response (UPR). ER stress is reported to perturb hepatic insulin response metabolism while promoting insulin resistance. Here, we report that ER stress regulates the de novo biosynthesis of sphingolipids via the activation of serine palmitoyltransferase (SPT), a rate-limiting enzyme involved in the de novo biosynthesis of ceramides. We found that the expression levels of Sptlc1 and Sptlc2, the major SPT subunits, were upregulated and that the cellular concentrations of ceramide and dihydroceramide were elevated by acute ER stress inducers in primary hepatocytes and HepG2 cells. Sptlc2 was upregulated and ceramide levels were elevated by tunicamycin in the livers of C57BL/6J wild-type mice. Analysis of the Sptlc2 promoter demonstrated that the transcriptional activation of Sptlc2 was mediated by the spliced form of X-box binding protein 1 (sXBP1). Liver-specific Sptlc2 transgenic mice exhibited increased ceramide levels in the liver and elevated fasting glucose levels. The insulin response was reduced by the inhibition of the phosphorylation of insulin receptor β (IRβ). Collectively, these results demonstrate that ER stress induces activation of the de novo biosynthesis of ceramide and contributes to the progression of hepatic insulin resistance via the reduced phosphorylation of IRβ in hepatocytes.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3