Author:
Hu Shu,Zhao Xiaoyi,Mao Guping,Zhang Ziji,Wen Xingzhao,Zhang Chengyun,Liao Weiming,Zhang Zhiqi
Abstract
Abstract
MicroRNAs (miRNAs, miR) play a key role in the pathogenesis of osteoarthritis (OA). Few studies have examined the regulatory role of P21-activated kinases (PAKs), a family of serine/threonine kinases, in OA. The aim of this study was to determine whether miR-455-3p can regulate cartilage degeneration in OA by targeting PAK2. MiR-455-3p knockout mice showed significant degeneration of the knee cartilage. MiR-455-3p expression increased and PAK2 expression decreased in the late stage of human adipose-derived stem cell (hADSC) chondrogenesis and in chondrocytes affected by OA. Furthermore, in both miR-455-3p-overexpressing chondrocytes and PAK2-suppressing chondrocytes, cartilage-specific genes were upregulated, and hypertrophy-related genes were downregulated. A luciferase reporter assay confirmed that miR-455-3p regulates PAK2 expression by directly targeting the 3′-untranslated regions (3′UTRs) of PAK2 mRNA. IPA-3, a PAK inhibitor, inhibited cartilage degeneration due to OA. Moreover, suppressing PAK2 promoted R-Smad activation in the TGF/Smad signaling pathway in chondrocytes. Altogether, our results suggest that miR-455-3p promotes TGF-β/Smad signaling in chondrocytes and inhibits cartilage degeneration by directly suppressing PAK2. These results thus indicate that miR-455-3p and PAK2 are novel potential therapeutic agents and targets, respectively, for the treatment of OA.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangdong Province, China
Science and Technology Project of Guangzhou City, China
Publisher
Springer Science and Business Media LLC
Subject
Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献