Angiotensin receptor blockers, but not angiotensin-converting enzyme inhibitors, inhibit abnormal bone changes in spondyloarthritis

Author:

Choi Jin SunORCID,Kim Ji-Young,Ahn Min-Joo,Jang Hanbit,Song Seungtaek,Choi Sung Hoon,Park Ye-Soo,Jo Sungsin,Kim Tae-HwanORCID,Shim Seung Cheol

Abstract

AbstractSpondyloarthritis (SpA) is a chronic inflammatory disease that results in bone ankylosis. The tissue renin-angiotensin system (RAS) is an emerging pathway potentially implicated in SpA-associated bone changes. The aim of the present study was to determine the mechanisms underlying this relationship. Sakaguchi (SKG) mice injected with curdlan (SKGc), animal models for SpA, were treated with RAS modulators, angiotensin II receptor blockers (ARBs) or angiotensin-converting enzyme inhibitors (ACEis). Disease activity was assessed using clinical scores and computed tomography scans. Mouse primary bone marrow monocytes (BMMs), osteoblast (OB) progenitor cells, peripheral blood monocytes (PBMCs), and bone-derived cells (BdCs) from patients with radiographic axial SpA (r-axSpA) were used to investigate the role of RAS in SpA pathogenesis. The expression of RAS components was significantly increased in SKGc mouse joints, and ARBs significantly reduced erosion and systemic bone loss, whereas ACEis did not. Osteoclast (OC) differentiation from primary BMMs, mediated by TRAF6, was inhibited by ARBs but promoted by ACEis; the modulators also exerted opposite effects on OB differentiation. Expression of RAS molecules was higher in PBMCs and BdCs of patients with r-axSpA than in control participants. ARBs inhibited OB differentiation in the BdCs of patients with r-axSpA, whereas ACEis did not. Neither ARBs nor ACEis affected OB differentiation in the control participants. In SpA, a condition characterized by RAS overexpression, ARBs, but not ACEis, inhibited OC and OB differentiation and bone progression. The findings should be taken into account when treating patients with SpA using RAS modulators.

Funder

National Research Foundation of Korea

Chungnam National University Hospital Research Fund, 2016

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3