Deep proteome profiling of the hippocampus in the 5XFAD mouse model reveals biological process alterations and a novel biomarker of Alzheimer’s disease

Author:

Kim Dong Kyu,Han DohyunORCID,Park Joonho,Choi Hyunjung,Park Jong-Chan,Cha Moon-Yong,Woo Jongmin,Byun Min Soo,Lee Dong Young,Kim YoungsooORCID,Mook-Jung Inhee

Abstract

AbstractAlzheimer’s disease (AD), which is the most common type of dementia, is characterized by the deposition of extracellular amyloid plaques. To understand the pathophysiology of the AD brain, the assessment of global proteomic dynamics is required. Since the hippocampus is a major region affected in the AD brain, we performed hippocampal analysis and identified proteins that are differentially expressed between wild-type and 5XFAD model mice via LC-MS methods. To reveal the relationship between proteomic changes and the progression of amyloid plaque deposition in the hippocampus, we analyzed the hippocampal proteome at two ages (5 and 10 months). We identified 9,313 total proteins and 1411 differentially expressed proteins (DEPs) in 5- and 10-month-old wild-type and 5XFAD mice. We designated a group of proteins showing the same pattern of changes as amyloid beta (Aβ) as the Aβ-responsive proteome. In addition, we examined potential biomarkers by investigating secretory proteins from the Aβ-responsive proteome. Consequently, we identified vitamin K-dependent protein S (PROS1) as a novel microglia-derived biomarker candidate in the hippocampus of 5XFAD mice. Moreover, we confirmed that the PROS1 level in the serum of 5XFAD mice increases as the disease progresses. An increase in PROS1 is also observed in the sera of AD patients and shows a close correlation with AD neuroimaging markers in humans. Therefore, our quantitative proteome data obtained from 5XFAD model mice successfully predicted AD-related biological alterations and suggested a novel protein biomarker for AD.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3