Abstract
AbstractnArgBP2, a candidate gene for intellectual disability, is a postsynaptic protein critical for dendritic spine development and morphogenesis, and its knockdown (KD) in developing neurons severely impairs spine-bearing excitatory synapse formation. Surprisingly, nArgBP2 KD in mature neurons did not cause morphological defects in the existing spines at rest, raising questions of how it functions in mature neurons. We found that unlike its inaction at rest, nArgBP2 KD completely inhibited the enlargement of dendritic spines during chemically induced long-term potentiation (cLTP) in mature neurons. We further found that nArgBP2 forms condensates in dendritic spines and that these condensates are dispersed by cLTP, which spatiotemporally coincides with spine head enlargement. Condensates with CaMKII phosphorylation-deficient mutant or CaMKII inhibition are neither dispersed nor accompanied by spine enlargement during cLTP. We found that nArgBP2 condensates in spines exhibited liquid-like properties, and in heterologous and in vitro expression systems, nArgBP2 undergoes liquid-liquid phase separation via multivalent intermolecular interactions between SH3 domains and proline-rich domains. It also forms coacervates with CaMKIIα, which is rapidly dissembled by calcium/CaMKIIα-dependent phosphorylation. We further showed that the interaction between nArgBP2 and WAVE1 competes with nArgBP2 phase separation and that blocking the nArgBP2-WAVE1 interaction prevents spine enlargement during cLTP. Together, our results suggest that nArgBP2 at rest is confined to the condensates but is released by CaMKIIα-mediated phosphorylation during synaptic plasticity, which regulates its timely interaction with WAVE1 to induce spine head enlargement in mature neurons.
Funder
National Research Foundation of Korea
Korea Health Industry Development Institute
Publisher
Springer Science and Business Media LLC
Subject
Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献