TGF-β1 induces VEGF expression in human granulosa-lutein cells: a potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome

Author:

Fang Lanlan,Li Yiran,Wang Sijia,Li Yuxi,Chang Hsun-Ming,Yi Yuyin,Yan Yang,Thakur Avinash,Leung Peter C. K.,Cheng Jung-Chien,Sun Ying-Pu

Abstract

AbstractOvarian hyperstimulation syndrome (OHSS) is one of the most serious and iatrogenic complications that can occur during in vitro fertilization treatment. Although the pathogenesis of OHSS is not fully understood, vascular endothelial growth factor (VEGF) has been recognized as an important mediator of the development of OHSS. Transforming growth factor-beta-1 (TGF-β1) is known to regulate various ovarian functions. However, whether VEGF can be regulated by TGF-β1 in human granulosa cells has not been determined. In addition, the role of TGF-β1 in the pathogenesis of OHSS remains unknown. In the present study, we demonstrate that TGF-β1 stimulates VEGF expression in and secretion from both immortalized human granulosa-lutein (hGL) cells and primary hGL cells. Our results demonstrate that the SMAD2/3, ERK1/2, and p38 MAPK signaling pathways are involved in TGF-β1-induced VEGF expression and secretion. Using a mouse OHSS model, we show that the expression levels of TGF-β1 and VEGF are increased in the ovaries of OHSS mice. Blocking TGF-β1 signaling inhibits the development of OHSS by attenuating VEGF expression. Moreover, clinical results reveal that the protein levels of TGF-β1 and VEGF are increased in the follicular fluid of patients with OHSS, and that the levels of these two proteins in the follicular fluid are positively correlated. The results of this study help to elucidate the mechanisms by which VEGF expression is regulated in hGL cells, which could lead to the development of alternative therapeutic approaches for treating OHSS.

Funder

National Natural Science Foundation of China

Chinese Medical Association

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3