Author:
Im Joo-Young,Kim Bo-Kyung,Yoon Sung-Hoon,Cho Byoung Chul,Baek Yu Mi,Kang Mi-Jung,Kim Nayeon,Gong Young-Dae,Won Misun
Abstract
AbstractDNA damage-induced apoptosis suppressor (DDIAS) promotes the progression of lung cancer and hepatocellular carcinoma through the regulation of multiple pathways. We screened a chemical library for anticancer agent(s) capable of inhibiting DDIAS transcription. DGG-100629 was found to suppress lung cancer cell growth through the inhibition of DDIAS expression. DGG-100629 induced c-Jun NH(2)-terminal kinase (JNK) activation and inhibited NFATc1 nuclear translocation. Treatment with SP600125 (a JNK inhibitor) or knockdown of JNK1 restored DDIAS expression and reversed DGG-100629-induced cell death. In addition, DGG-100629 suppressed the signal transducer and activator of transcription (STAT3) signaling pathway. DDIAS or STAT3 overexpression restored lung cancer cell growth in the presence of DGG-100629. In a xenograft assay, DGG-100629 inhibited tumor growth by reducing the level of phosphorylated STAT3 and the expression of STAT3 target genes. Moreover, DGG-100629 inhibited the growth of lung cancer patient-derived gefitinib-resistant cells expressing NFATc1 and DDIAS. Our findings emphasize the potential of DDIAS blockade as a therapeutic approach and suggest a novel strategy for the treatment of gefitinib-resistant lung cancer.
Funder
National Research Foundation of Korea
Korea Research Institute of Bioscience and Biotechnology
Publisher
Springer Science and Business Media LLC
Subject
Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry
Reference44 articles.
1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).
2. Osmani, L., Askin, F., Gabrielson, E. & Li, Q. K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin. Cancer Biol. 52, 103–109 (2018).
3. Zhang, Z. Z., Huang, J., Wang, Y. P., Cai, B. & Han, Z. G. NOXIN as a cofactor of DNA polymerase-primase complex could promote hepatocellular carcinoma. Int. J. Cancer 137, 765–775 (2015).
4. Won, K. J. et al. Human Noxin is an anti-apoptotic protein in response to DNA damage of A549 non-small cell lung carcinoma. Int. J. Cancer 134, 2595–2604 (2014).
5. Liu, N. et al. DDIAS promotes invasion and proliferation of non-small cell lung cancer and predicts poor survival of lung cancer patients. Int. J. Clin. Exp. Pathol. 10, 11506–11515 (2017).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献