Inhibition of acetylation of histones 3 and 4 attenuates aortic valve calcification

Author:

Gu Jia,Lu Yan,Deng Menqing,Qiu Ming,Tian Yunfan,Ji Yue,Zong Pengyu,Shao Yongfeng,Zheng Rui,Zhou Bin,Sun WeiORCID,Kong Xiangqing

Abstract

AbstractAortic valve calcification develops in patients with chronic kidney disease who have calcium and phosphate metabolic disorders and poor prognoses. There is no effective treatment except valve replacement. However, metabolic disorders put patients at high risk for surgery. Increased acetylation of histones 3 and 4 is present in interstitial cells from human calcific aortic valves, but whether it is involved in aortic valve calcification has not been studied. In this study, we found that treating cultured porcine aortic valve interstitial cells with a high-calcium/high-phosphate medium induced calcium deposition, apoptosis, and expression of osteogenic marker genes, producing a phenotype resembling valve calcification in vivo. These phenotypic changes were attenuated by the histone acetyltransferase inhibitor C646. C646 treatment increased the levels of class I histone deacetylase members and decreased the acetylation of histones 3 and 4 induced by the high-calcium/high-phosphate treatment. Conversely, the histone deacetylase inhibitor suberoylanilide hydroxamic acid promoted valve interstitial cell calcification. In a mouse model of aortic valve calcification induced by adenine and vitamin D treatment, the levels of acetylated histones 3 and 4 were increased in the calcified aortic valves. Treatment of the models with C646 attenuated aortic valve calcification by restoring the levels of acetylated histones 3 and 4. These observations suggest that increased acetylation of histones 3 and 4 is part of the pathogenesis of aortic valve calcification associated with calcium and phosphate metabolic disorders. Targeting acetylated histones 3 and 4 may be a potential therapy for inoperable aortic valve calcification in chronic kidney disease patients.

Funder

the Six Talent Peaks project in Jiangsu Province

the Natural Science Foundation of Jiangsu Province for Youth

Shuang Chuang Tuan Dui Award of Jiangsu Province of China

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3