NRBF2-mediated autophagy contributes to metabolite replenishment and radioresistance in glioblastoma

Author:

Kim Jeongha,Kang Hyunkoo,Son Beomseok,Kim Min-Jung,Kang JiHoon,Park Kang Hyun,Jeon Jaewan,Jo Sunmi,Kim Hae Yu,Youn HyeSookORCID,Youn BuHyun

Abstract

AbstractOvercoming therapeutic resistance in glioblastoma (GBM) is an essential strategy for improving cancer therapy. However, cancer cells possess various evasion mechanisms, such as metabolic reprogramming, which promote cell survival and limit therapy. The diverse metabolic fuel sources that are produced by autophagy provide tumors with metabolic plasticity and are known to induce drug or radioresistance in GBM. This study determined that autophagy, a common representative cell homeostasis mechanism, was upregulated upon treatment of GBM cells with ionizing radiation (IR). Nuclear receptor binding factor 2 (NRBF2)—a positive regulator of the autophagy initiation step—was found to be upregulated in a GBM orthotopic xenograft mouse model. Furthermore, ATP production and the oxygen consumption rate (OCR) increased upon activation of NRBF2-mediated autophagy. It was also discovered that changes in metabolic state were induced by alterations in metabolite levels caused by autophagy, thereby causing radioresistance. In addition, we found that lidoflazine—a vasodilator agent discovered through drug repositioning—significantly suppressed IR-induced migration, invasion, and proliferation by inhibiting NRBF2, resulting in a reduction in autophagic flux in both in vitro models and in vivo orthotopic xenograft mouse models. In summary, we propose that the upregulation of NRBF2 levels reprograms the metabolic state of GBM cells by activating autophagy, thus establishing NRBF2 as a potential therapeutic target for regulating radioresistance of GBM during radiotherapy.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3