MiR-1224-5p modulates osteogenesis by coordinating osteoblast/osteoclast differentiation via the Rap1 signaling target ADCY2

Author:

Hu Liangcong,Xie Xudong,Xue Hang,Wang Tiantian,Panayi Adriana C.,Lin Ze,Xiong Yuan,Cao Faqi,Yan Chengcheng,Chen Lang,Cheng Peng,Zha Kangkang,Sun Yun,Liu Guodong,Yu Chenyan,Hu Yiqiang,Tao Ranyang,Zhou Wu,Mi Bobin,Liu Guohui

Abstract

AbstractMicroRNAs (miRNAs) broadly regulate normal biological functions of bone and the progression of fracture healing and osteoporosis. Recently, it has been reported that miR-1224-5p in fracture plasma is a potential therapy for osteogenesis. To investigate the roles of miR-1224-5p and the Rap1 signaling pathway in fracture healing and osteoporosis development and progression, we used BMMs, BMSCs, and skull osteoblast precursor cells for in vitro osteogenesis and osteoclastogenesis studies. Osteoblastogenesis and osteoclastogenesis were detected by ALP, ARS, and TRAP staining and bone slice resorption pit assays. The miR-1224-5p target gene was assessed by siRNA-mediated target gene knockdown and luciferase reporter assays. To explore the Rap1 pathway, we performed high-throughput sequencing, western blotting, RT-PCR, chromatin immunoprecipitation assays and immunohistochemical staining. In vivo, bone healing was judged by the cortical femoral defect, cranial bone defect and femoral fracture models. Progression of osteoporosis was evaluated by an ovariectomy model and an aged osteoporosis model. We discovered that the expression of miR-1224-5p was positively correlated with fracture healing progression. Moreover, in vitro, overexpression of miR-1224-5p slowed Rankl-induced osteoclast differentiation and promoted osteoblast differentiation via the Rap1-signaling pathway by targeting ADCY2. In addition, in vivo overexpression of miR-1224-5p significantly promoted fracture healing and ameliorated the progression of osteoporosis caused by estrogen deficiency or aging. Furthermore, knockdown of miRNA-1224-5p inhibited bone regeneration in mice and accelerated the progression of osteoporosis in elderly mice. Taken together, these results identify miR-1224-5p as a key bone osteogenic regulator, which may be a potential therapeutic target for osteoporosis and fracture nonunion.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3