The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer

Author:

Heo Jinbeom,Lee Jinyoung,Nam Yun Ji,Kim YongHwan,Yun HongDuck,Lee Seungun,Ju Hyein,Ryu Chae-Min,Jeong Seon Min,Lee Jinwon,Lim Jisun,Cho Yong Mee,Jeong Eui ManORCID,Hong Bumsik,Son Jaekyoung,Shin Dong-MyungORCID

Abstract

AbstractAberrant activation of embryogenesis-related molecular programs in urothelial bladder cancer (BC) is associated with stemness features related to oncogenic dedifferentiation and tumor metastasis. Recently, we reported that overexpression of transcription factor CP2-like protein-1 (TFCP2L1) and its phosphorylation at Thr177 by cyclin-dependent kinase-1 (CDK1) play key roles in regulating bladder carcinogenesis. However, the clinical relevance and therapeutic potential of this novel CDK1-TFCP2L1 molecular network remain elusive. Here, we demonstrated that inhibitor of DNA binding-2 (ID2) functions as a crucial mediator by acting as a direct repressive target of TFCP2L1 to modulate the stemness features and survival of BC cells. Low ID2 and high CDK1 expression were significantly associated with unfavorable clinical characteristics. TFCP2L1 downregulated ID2 by directly binding to its promoter region. Consistent with these findings, ectopic expression of ID2 or treatment with apigenin, a chemical activator of ID2, triggered apoptosis and impaired the proliferation, suppressed the stemness features, and reduced the invasive capacity of BC cells. Combination treatment with the specific CDK1 inhibitor RO-3306 and apigenin significantly suppressed tumor growth in an orthotopic BC xenograft animal model. This study demonstrates the biological role and clinical utility of ID2 as a direct target of the CDK1-TFCP2L1 pathway for modulating the stemness features of BC cells.

Funder

National Research Foundation of Korea

Asan Institute for Life Sciences, Asan Medical Center

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3