Preterm birth is associated with epigenetic programming of transgenerational hypertension in mice

Author:

Dumeige Laurence,Nehlich Mélanie,Viengchareun Say,Perrot Julie,Pussard Eric,Lombès Marc,Martinerie Laetitia

Abstract

AbstractRenal and cardiovascular complications of prematurity are well established, notably the development of hypertension in adulthood. However, the underlying molecular mechanisms remain poorly understood. Our objective was to investigate the impact of prematurity on the ontogenesis of renal corticosteroid pathways, to evaluate its implication in perinatal renal complications and in the emergence of hypertension in adulthood. Swiss CD1 pregnant mice were injected with lipopolysaccharides at 18 days of gestation (E18) to induce prematurity at E18.5. Pups were sacrificed at birth, 7 days and 6 months of life. Second (F2) and third (F3) generations, established by mating prematurely born adult females with wild-type males, were also analyzed. Former preterm males developed hypertension at M6 (P < 0.0001). We found robust activation of renal corticosteroid target gene transcription at birth in preterm mice (αENaC (+45%), Gilz (+85%)), independent of any change in mineralocorticoid or glucocorticoid receptor expression. The offspring of the preterm group displayed increased blood pressure in F2 and F3, associated with increased renal Gilz mRNA expression, despite similar MR or GR expression and plasma corticosteroid levels measured by LC-MS/MS. Gilz promoter methylation measured by methylated DNA immunoprecipitation-qPCR was reduced with a negative correlation between methylation and expression (P = 0.0106). Our study demonstrates prematurity-related alterations in renal corticosteroid signaling pathways, with transgenerational inheritance of blood pressure dysregulation and epigenetic Gilz regulation up to the third generation. This study provides a better understanding of the molecular mechanisms involved in essential hypertension, which could partly be due to perinatal epigenetic programming from previous generations.

Funder

Laetitia Martinerie received funding from the PremUP Foundation, Inserm, University Paris-Sud, from the french Pediatric Endocrinology Society and from Académie de Médecine (Nestlé Waters Prize).

Laurence Dumeige received a grant from the French Pediatric Society, the French Pediatric Endocrinology Society, and the French Endocrinology Society. There was no grant reference number assigned.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3