Author:
Cho Yoon Mi,Kim Dong Hee,Lee Kyung Hye,Jeong Seong-Whan,Kwon Oh-Joo
Abstract
AbstractThe peroxisome proliferator-activated receptor-γ (PPARγ) improves whole-body insulin sensitivity by regulating the adipogenic and metabolic functions of mature adipocytes. We have previously demonstrated that an active splice variant of X-box binding protein 1 (XBP1s) enhances PPARγ expression during adipogenesis. In this study, we investigated the role of XBP1s, particularly with respect to PPARγ, in the mechanisms underlying insulin sensitivity in mature adipocytes. Insulin was able to stimulate XBP1s generation by activating inositol-requiring enzyme 1 (IRE1) α and was also able to increase its transcriptional activity by inducing nuclear translocation. XBP1s also upregulated the levels of phosphorylated IRS1 and AKT, demonstrating a positive feedback regulatory mechanism linking insulin and XBP1s. XBP1s enhanced the expression of fibroblast growth factor 21 and, in turn, increased PPARγ activity, translocation of GLUT4 to the cell surface, and glucose uptake rate in adipocytes. In addition, XBP1s abolished palmitate-induced insulin resistance in adipocytes by increasing adiponectin secretion, repressing the secretion of pro-inflammatory adipokines such as leptin, monocyte chemoattractant protein 1, and tumor necrosis factor α, and decreasing fatty acid release. These findings provide a novel mechanism by which XBP1s stimulate insulin sensitivity in adipocytes through fibroblast growth factor 21 induction and PPARγ activation.
Publisher
Springer Science and Business Media LLC
Subject
Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献