Language or rating scales based classifications of emotions: computational analysis of language and alexithymia

Author:

Sikström Sverker,Nicolai Miriam,Ahrendt Josephine,Nevanlinna Suvi,Stille Lotta

Abstract

AbstractRating scales are the dominating tool for the quantitative assessment of mental health. They are often believed to have a higher validity than language-based responses, which are the natural way of communicating mental states. Furthermore, it is unclear how difficulties articulating emotions—alexithymia—affect the accuracy of language-based communication of emotions. We investigated whether narratives describing emotional states are more accurately classified by questions-based computational analysis of language (QCLA) compared to commonly used rating scales. Additionally, we examined how this is affected by alexithymia. In Phase 1, participants (N = 348) generated narratives describing events related to depression, anxiety, satisfaction, and harmony. In Phase 2, another set of participants summarized the emotions described in the narratives of Phase 1 in five descriptive words and rating scales (PHQ-9, GAD-7, SWLS, and HILS). The words were quantified with a natural language processing model (i.e., LSA) and classified with machine learning (i.e., multinomial regression). The results showed that the language-based responses can be more accurate in classifying the emotional states compared to the rating scales. The degree of alexithymia did not influence the correctness of classification based on words or rating scales, suggesting that QCLA is not sensitive to alexithymia. However, narratives generated by people with high alexithymia were more difficult to classify than those generated by people with low alexithymia. These results suggest that the assessment of mental health may be improved by language-based responses analyzed by computational methods compared to currently used rating scales.

Funder

Marcus och Amalia Wallenbergs minnesfond

FORTE

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3