Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property

Author:

Shi Shan,Xu Chengjun,Yang Cheng,Chen Yanyi,Liu Juanjuan,Kang Feiyu

Abstract

Abstract Flexible asymmetric supercapacitors with excellent electrochemical performance and aesthetic property are realized by using ultrathin two-dimensional (2D) MnO2 and graphene nanosheets as cathode and anode materials, respectively. 2D MnO2 nanosheets (MSs) with a thickness of ca. 2 nm are synthesized with a soft template method for the first time, which achieve a high specific capacitance of 774 F g−1 even after 10000 cycles. Asymmetric supercapacitors based on ultrathin MSs and graphene exhibit a very high energy density up to 97.2 Wh kg−1 with no more than 3% capacitance loss after 10000 cycles in aqueous electrolyte. Most interestingly, we show that the energy storage device can have an aesthetic property. For instance, a “Chinese panda” supercapacitor is capable of lighting up a red light emitting diode. This work has another, quite different aspect that a supercapacitor is no longer a cold industry product, but could have the meaning of art.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3