Cerebral Extracellular Lactate Increase is Predominantly Nonischemic in Patients with Severe Traumatic Brain Injury

Author:

Sala Nathalie1,Suys Tamarah1,Zerlauth Jean-Baptiste2,Bouzat Pierre13,Messerer Mahmoud4,Bloch Jocelyne4,Levivier Marc4,Magistretti Pierre J5,Meuli Reto,Oddo Mauro1

Affiliation:

1. Department of Intensive Care Medicine, Neuroscience Critical Care Research Unit, CHUV-Lausanne University Hospital, Lausanne, Switzerland

2. Department of Radiology, CHUV-Lausanne University Hospital, Lausanne, Switzerland

3. The University Joseph Fourier, Grenoble, France

4. Department of Clinical Neurosciences, Service of Neurosurgery, CHUV-Lausanne University Hospital, Lausanne, Switzerland

5. Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, EPFL-Ecole Polytechnique Fédérale Lausanne and University of Lausanne, Lausanne, Switzerland

Abstract

Growing evidence suggests that endogenous lactate is an important substrate for neurons. This study aimed to examine cerebral lactate metabolism and its relationship with brain perfusion in patients with severe traumatic brain injury (TBI). A prospective cohort of 24 patients with severe TBI monitored with cerebral microdialysis (CMD) and brain tissue oxygen tension (PbtO2) was studied. Brain lactate metabolism was assessed by quantification of elevated CMD lactate samples (>4 mmol/L); these were matched to CMD pyruvate and PbtO2 values and dichotomized as glycolytic (CMD pyruvate > 119 μmol/L vs. low pyruvate) and hypoxic (PbtO2 < 20 mm Hg vs. nonhypoxic). Using perfusion computed tomography (CT), brain perfusion was categorized as oligemic, normal, or hyperemic, and was compared with CMD and PbtO2 data. Samples with elevated CMD lactate were frequently observed (41 ±8%), and we found that brain lactate elevations were predominantly associated with glycolysis and normal PbtO2 (73 ± 8%) rather than brain hypoxia (14 ±6%). Furthermore, glycolytic lactate was always associated with normal or hyperemic brain perfusion, whereas all episodes with hypoxic lactate were associated with diffuse oligemia. Our findings suggest predominant nonischemic cerebral extracellular lactate release after TBI and support the concept that lactate may be used as an energy substrate by the injured human brain.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3