Sepsis-Associated Encephalopathy: A Magnetic Resonance Imaging and Spectroscopy Study

Author:

Bozza Fernando A12,Garteiser Philippe3,Oliveira Marcus F24,Doblas Sabrina3,Cranford Rebecca3,Saunders Debra3,Jones Inna3,Towner Rheal A3,Castro-Faria-Neto Hugo C5

Affiliation:

1. ICU, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil

2. Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

3. Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA

4. Programa de Biologia Molecular e Biotecnologia, Laboratório de Bioquímica Redox, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

5. Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil

Abstract

Brain dysfunction is frequently observed in sepsis as a consequence of changes in cerebral structure and metabolism, resulting in worse outcome and reduced life-quality of surviving patients. However, the mechanisms of sepsis-associated encephalopathy development and a better characterization of this syndrome in vivo are lacking. Here, we used magnetic resonance imaging (MRI) techniques to assess brain morphology and metabolism in a murine sepsis model (cecal ligation and puncture, CLP). Sham-operated and CLP mice were subjected to a complete MRI session at baseline, 6 and 24 h after surgery. Accumulation of vasogenic edematic fluid at the base of the brain was observed in T2-weighted image at 6 and 24 h after CLP. Also, the water apparent diffusion coefficients in both hippocampus and cortex were decreased, suggesting a cytotoxic edema in brains of nonsurvival septic animals. Moreover, the N-acetylaspartate/choline ratio was reduced in brains of septic mice, indicating neuronal damage. In conclusion, noninvasive assessment by MRI allowed the identification of new aspects of brain damage in sepsis, including cytotoxic and vasogenic edema as well as neuronal damage. These findings highlight the potential applications of MRI techniques for the diagnostic and therapeutic studies in sepsis.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3