Roscovitine Reduces Neuronal Loss, Glial Activation, and Neurologic Deficits after Brain Trauma

Author:

Hilton Genell D1,Stoica Bogdan A1,Byrnes Kimberly R1,Faden Alan I1

Affiliation:

1. Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA

Abstract

Traumatic brain injury (TBI) causes both direct and delayed tissue damage. The latter is associated with secondary biochemical changes such as cell cycle activation, which leads to neuronal death, inflammation, and glial scarring. Flavopiridol—a cyclin-dependent kinase (CDK) inhibitor that is neither specific nor selective—is neuroprotective. To examine the role of more specific CDK inhibitors as potential neuroprotective agents, we studied the effects of roscovitine in TBI. Central administration of roscovitine 30 mins after injury resulted in significantly decreased lesion volume, as well as improved motor and cognitive recovery. Roscovitine attenuated neuronal death and inhibited activation of cell cycle pathways in neurons after TBI, as indicated by attenuated cyclin G1 accumulation and phosphorylation of retinoblastoma protein. Treatment also decreased microglial activation after TBI, as reflected by reductions in ED1, galectin-3, p22PHOX, and Iba-1 levels, and attenuated astrogliosis, as shown by decreased accumulation of glial fibrillary acidic protein. In primary cortical microglia and neuronal cultures, roscovitine and other selective CDK inhibitors attenuated neuronal cell death, as well as decreasing microglial activation and microglial-dependent neurotoxicity. These data support a multifactorial neuroprotective effect of cell cycle inhibition after TBI—likely related to inhibition of neuronal apoptosis, microglial-induced inflammation, and gliosis—and suggest that multiple CDKs are potentially involved in this process.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3