Activation of the Central Histaminergic System is Involved in Hypoxia-Induced Stroke Tolerance in Adult Mice

Author:

Fan Yan-Ying1,Hu Wei-Wei1,Dai Hai-Bin2,Zhang Jian-Xiang1,Zhang Lu-Yi1,He Ping1,Shen Yao1,Ohtsu Hiroshi3,Wei Er-Qing1,Chen Zhong1

Affiliation:

1. Department of Pharmacology, Institute of Neuroscience, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China

2. Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

3. Department of Engineering, School of Medicine, Tohoku University, Aoba-ku, Sendai, Japan

Abstract

We hypothesized that activation of the central histaminergic system is required for neuroprotection induced by hypoxic preconditioning. Wild-type (WT) and histidine decarboxylase knockout (HDC-KO) mice were preconditioned by 3 hours of hypoxia (8% O2) and, 48 hours later, subjected to 30 minutes of middle cerebral artery (MCA) occlusion, followed by 24 hours of reperfusion. Hypoxic preconditioning improved neurologic function and decreased infarct volume in WT or HDC-KO mice treated with histamine, but not in HDC-KO or WT mice treated with α-fluoromethylhistidine (α-FMH, an inhibitor of HDC). Laser-Doppler flowmetry analysis showed that hypoxic preconditioning ameliorated cerebral blood flow (CBF) in the periphery of the MCA territory during ischemia in WT mice but not in HDC-KO mice. Histamine decreased in the cortex of WT mice after 2, 3, and 4 hours of hypoxia, and HDC activity increased after 3 hours of hypoxia. Vascular endothelial growth factor (VEGF) mRNA and protein expressions showed a greater increase after hypoxia than those in HDC-KO or α-FMH-treated WT mice. In addition, the VEGF receptor-2 antagonist SU1498 prevented the protective effect of hypoxic preconditioning in infarct volume and reversed increased peripheral CBF in WT mice. Therefore, endogenous histamine is an essential mediator of hypoxic preconditioning. It may function by enhancing hypoxia-induced VEGF expression.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3