Mechanisms of Enhanced Basal Tone of Brain Parenchymal Arterioles During Early Postischemic Reperfusion: Role of ET-1-Induced Peroxynitrite Generation

Author:

Cipolla Marilyn J123,Sweet Julie G1,Gokina Natalia I2,White Sheryl L1,Nelson Mark T3

Affiliation:

1. Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, USA

2. Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, Vermont, USA

3. Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, USA

Abstract

The contributions of vasoconstrictors (endothelin-1 (ET-1), peroxynitrite) and endothelium-dependent vasodilatory mechanisms to basal tone were investigated in parenchymal arterioles (PAs) after early postischemic reperfusion. Transient middle cerebral artery occlusion (tMCAO) was induced for 2 hours with 30 minutes reperfusion in male Wistar rats and compared with ischemia alone (permanent MCAO (pMCAO);2.5 hours) or sham controls. Changes in lumen diameter of isolated and pressurized PAs were compared. Quantitative PCR was used to measure endothelin type B (ETB) receptors. Constriction to intravascular pressure (‘basal tone’) was not affected by tMCAO or pMCAO. However, constriction to inhibitors of endothelial cell, small-(SK) and intermediate-(IK) conductance, Ca2+-sensitive K+ channels (apamin and TRAM-34, respectively) were significantly enhanced in PAs from tMCAO compared with pMCAO or sham. Addition of the ETB agonist sarafotoxin caused constriction in PAs from tMCAO but not from sham animals (21±4% versus 3±3% at 1 nmol/L; P<0.01) that was inhibited by the peroxynitrite scavenger FeTMPyP (5,10,15,20-tetrakis (N-methyl-4′-pyridyl) porphinato iron (III) chloride) (100 μmol/L). Expression of ETB receptors was not found on PA smooth muscle, suggesting that constriction to sarafotoxin after tMCAO was due to peroxynitrite and not ETB receptor expression. The maintenance of basal tone in PAs after tMCAO may restrict flow to the ischemic region and contribute to infarct expansion.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3