Resveratrol Attenuates Oxidized LDL-Evoked Lox-1 Signaling and Consequently Protects against Apoptotic Insults to Cerebrovascular Endothelial Cells

Author:

Chang Huai-Chia12,Chen Tyng-Guey3,Tai Yu-Ting3,Chen Ta-Liang2,Chiu Wen-Ta4,Chen Ruei-Ming135

Affiliation:

1. Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan

2. Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan

3. Department of Anesthesiology, Taipei Medical University-Wan Fang Medical Center, Taipei, Taiwan

4. Center of Excellence for Cancer Research and Center of Excellence for Clinical Trial and Research in Neuroscience, Taipei Medical University, Taipei, Taiwan

5. Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Medical Center, Taipei, Taiwan

Abstract

Cerebrovascular endothelial cells (CECs) are crucial components of the blood—brain barrier. Our previous study showed that oxidized low-density lipoprotein (oxLDL) induces apoptosis of CECs. This study was designed to further evaluate the effects of resveratrol on oxLDL-induced CEC insults and its possible molecular mechanisms. Resveratrol decreased the oxidation of LDL into oxLDL. Additionally, the oxLDL-caused oxidative stress and cell damage were attenuated by resveratrol. Exposure of CECs to oxLDL induced cell shrinkage, DNA fragmentation, and cell apoptosis, but resveratrol defended against such injuries. Application of Lox-1 small interference (si)RNA into CECs reduced the translation of this membrane receptor, and simultaneously increased resveratrol protection from oxLDL-induced cell apoptosis. By comparison, overexpression of Lox-1 attenuated resveratrol protection. Resveratrol inhibited oxLDL-induced Lox-1 mRNA and protein expressions. Both resveratrol and Lox-1 siRNA decreased oxLDL-enhanced translocation of proapoptotic Bcl-2-associated X protein (Bax) from the cytoplasm to mitochondria. Sequentially, oxLDL-induced alterations in the mitochondrial membrane potential, cytochrome c release, and activities of caspases-9, -3, and -6 were decreased by resveratrol. Pretreatment with Z-VEID-FMK (benzyloxycarbonyl-Leu-Glu-His-Asp-fluoromethyl ketone) synergistically promoted resveratrol's protection against DNA fragmentation and cell apoptosis. Therefore, this study shows that resveratrol can protect CECs from oxLDL-induced apoptotic insults via downregulating Lox-1-mediated activation of the Bax-mitochondria—cytochrome c—caspase protease pathway.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3