Niaspan Treatment Increases Tumor Necrosis Factor-α-Converting Enzyme and Promotes Arteriogenesis after Stroke

Author:

Chen Jieli1,Cui Xu1,Zacharek Alex1,Ding Guang Liang1,Shehadah Amjad1,Jiang Quan1,Lu Mei2,Chopp Michael13

Affiliation:

1. Department of Neurology, Henry Ford Health Sciences Center, Detroit, Michigan, USA

2. Department of Biostatistics and Research Epidemiology, Henry Ford Health Sciences Center, Detroit, Michigan, USA

3. Department of Physics, Oakland University, Rochester, Michigan, USA

Abstract

We tested the hypothesis that Niaspan (a prolonged release formulation of niacin) increases tumor necrosis factor-α-converting enzyme (TACE) expression and Notch signaling activity and promotes arteriogenesis after stroke. Rats were subjected to middle cerebral artery occlusion and were treated with or without Niaspan. Niaspan significantly elevated local cerebral blood flow, and increased arteriogenesis as indicated by increased arterial diameter and vascular smooth muscle cell (VSMC) proliferation in the ischemic brain after stroke. The increased arteriogenesis significantly correlated with the functional outcome after stroke. Niaspan treatment of stroke upregulated TACE, Notch1, and Notch intracellular domain expression in the ischemic brain. To further investigate the mechanisms of Niaspan-induced arteriogenesis, a primary brain arterial culture was used. Niacin treatment significantly increased arterial sprouting and VSMC migration compared with control nontreated arterial cells. Inhibition of TACE by the TACE inhibitor or knockdown of TACE gene expression in brain arterial culture significantly attenuated Niacin-induced arterial sprouting and VSMC migration. In addition, TACE treatment of arterial culture significantly increased arterial VSMC migration and arterial sprouting. Knockdown of Notch1 marginally decreased arterial sprouting and VSMC migration compared with scrambled control. Niaspan promotes arteriogenesis, which is mediated, in part, by TACE.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3