Lasting Pure-Motor Deficits after Focal Posterior Internal Capsule White-Matter Infarcts in Rats

Author:

Blasi Francesco1,Whalen Michael J23,Ayata Cenk14

Affiliation:

1. Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA

2. Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA

3. Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA

4. Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

Abstract

Small white-matter infarcts of the internal capsule are clinically prevalent but underrepresented among currently available animal models of ischemic stroke. In particular, the assessment of long-term outcome, a primary end point in clinical practice, has been challenging due to mild deficits and the rapid and often complete recovery in most experimental models. We, therefore, sought to develop a focal white-matter infarction model that can mimic the lasting neurologic deficits commonly observed in stroke patients. The potent vasoconstrictor endothelin-1 ( n = 24) or vehicle ( n = 9) was stereotactically injected into the internal capsule at one of three antero-posterior levels (1, 2, or 3 mm posterior to bregma) in male Sprague-Dawley rats. Endothelin-injected animals showed highly focal (~1 mm3) and reproducible ischemic infarcts, with severe axonal and myelin loss accompanied by cellular infiltration when examined 2 and 4 weeks after injection. Only those rats injected with endothelin-1 at the most posterior location developed robust and pure-motor deficits in adhesive removal, cylinder and foot-fault tests that persisted at 1 month, without detectable sensory impairments. In summary, we present an internal capsule stroke model optimized to produce lasting pure-motor deficits in rats that may be suitable to study neurologic recovery and rehabilitation after white-matter injury.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3