Distribution of Vesicular Monoamine Transporter 2 Protein in Human Brain: Implications for Brain Imaging Studies

Author:

Tong Junchao12,Boileau Isabelle2,Furukawa Yoshiaki3,Chang Li-Jan1,Wilson Alan A4,Houle Sylvain,Kish Stephen J12

Affiliation:

1. Human Brain Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada

2. Addiction Imaging Research Group, Vivian M Rakoff PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada

3. Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, Faculty of Medicine, University and Post Graduate University of Juntendo, Tokyo, Japan

4. Vivian M Rakoff PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada

Abstract

The choice of reference region in positron emission tomography (PET) human brain imaging of the vesicular monoamine transporter 2 (VMAT2), a marker of striatal dopamine innervation, has been arbitrary, with cerebellar, whole cerebral, frontal, or occipital cortices used. To establish whether levels of VMAT2 are in fact low in these cortical areas, we measured VMAT2 protein distribution by quantitative immunoblotting in autopsied normal human brain ( n = 6). Four or five species of VMAT2 immunoreactivity (75, 55, 52, 45, 35 kDa) were detected, which were all markedly reduced in intensity in nigrostriatal regions of patients with parkinsonian conditions versus matched controls ( n = 9 to 10 each). Using the intact VMAT2 immunoreactivity, cerebellar and cerebral neocortices had levels of the transporter > 100-fold lower than the VMAT2-rich striatum and with no significant differences among the cortical regions. We conclude that human cerebellar and cerebral cortices contain negligible VMAT2 protein versus the striatum and, in this respect, all satisfy a criterion for a useful reference region for VMAT2 imaging. The slightly lower PET signal for VMAT2 binding in occipital (the currently preferred reference region) versus cerebellar cortex might not therefore be explained by differences in VMAT2 protein itself but possibly by other imaging variables, for example, partial volume effects.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3