TAT-Hsp70 Induces Neuroprotection Against Stroke Via Anti-Inflammatory Actions Providing Appropriate Cellular Microenvironment for Transplantation of Neural Precursor Cells

Author:

Doeppner Thorsten R12,Kaltwasser Britta12,Fengyan Jin1,Hermann Dirk M,Bähr Mathias23

Affiliation:

1. Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany

2. Department of Neurology, University of Goettingen Medical School, Goettingen, Germany

3. DFG Research Center for the Molecular Physiology of the Brain (CMPB), Goettingen, Germany

Abstract

Heat-shock protein 70 (Hsp70) protects against cerebral ischemia, which is attributed to its chaperone activity. However, recent reports also describe pro-inflammatory actions of Hsp70 via activation of Toll-like receptors (TLR). Using membrane-permeable transactivator of transcription (TAT)-Hsp70, we analyzed TAT-Hsp70-induced neuroprotection and its underlying mechanism after cerebral ischemia in mice. Infusion of TAT-Hsp70 reduced infarct volume and enhanced blood–brain barrier integrity on day 3 poststroke, when given no later than 12 hours. The latter was associated with reduction of microglial activation, although upregulation of pro-inflammatory TLR-2/4 was observed both in verum and in control animals. Nevertheless, protein abundance and nuclear translocation of downstream nuclear factor kappa B (NF-κB) as well as proteasomal degradation of the NF-κB regulator Ikappa B alpha (IκB-α) were significantly reduced by TAT-Hsp70. TAT-Hsp70-induced neuroprotection and functional recovery were restricted to 4 weeks only. However, TAT-Hsp70 provided an appropriate extracellular milieu for delayed intravenous transplantation of adult neural precursor cells (NPCs). Thus, NPCs that were grafted 28 days poststroke induced long-term neuroprotection for at least 3 months, which was not due to integration of grafted cells but rather due to paracrine effects of transplanted NPCs. Conclusively, TAT-Hsp70 ameliorates postischemic inflammation via proteasome inhibition, thus providing an appropriate extracellular milieu for delayed NPC transplantation and culminating in long-term neuroprotection.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3